A Comparison of Artificial Neural Network and Homotopy Continuation in 3D Interior Building Modelling

Ali Jamali

3D GIS research Lab,
Faculty of Geoinformation and Real Estate
Contents

- Introduction
- Problem Statement
- Research Workflow
- Data Collection
- 3D Data Modelling
- Uncertainty Modelling
- 3D Topological Navigation Network Modelling
- Conclusions and Recommendations
People spend almost **90%** of their life in indoor building environment (Klepeis et al. 2001; Li and Lee 2010).

Indoor building navigation is therefore necessary for moving objects like human to navigate.

A construction model depends on complex calculations which need to manage a large number of measured points.
Problem Statement

- Indoor building navigation modelling has different challenging issues such as suitability of 3D building models, indoor navigation networks, vertical and horizontal connectivity, which are required to be addressed.
- Indoor surveying for indoor building data collection
 - TLS? Total station? Photogrammetry?
- 3D Data structure
 - (Topological vs Geometrical?) DHE?
- 3D Data model
 - CityGML? BIM? CAD?
- 3D network models
 - GNM? IndoorGML?
Research Workflow

| Data Collection | • Trimble LaserAce 1000
| | • Trimble M3
| | • Leica C10
| | • Leica 307 TCR
| | • Faro Photon 120/20 |
| 3D Data Modelling | • Boundary Representation |
| Uncertainty Modelling | • Least Square Adjustment
| | • Polynomial Kernel
| | • Interval Analysis
| | • Homotopy Continuation
| | • Artificial Neural Network |
| 3D Topological Navigation Network Modelling | • Delaunay Triangulation
| | • Polygonization Method |
Data Collection
Surveying devices: a) Trimble LaserAce 1000; b) Trimble Total station M3; c) Leica 307 TCR; d) Leica ScanStation C10; e) Faro Photon 120/20.
3D Data Modelling
3D Building Modelling

Figure 7: 3D Building Modelling (Trimble M3)
Uncertainty Modelling
Trimble LaserAce 1000 Accuracy

<table>
<thead>
<tr>
<th>Surveying Equipment</th>
<th>Distance Accuracy</th>
<th>Horizontal Angle Accuracy</th>
<th>Vertical Angle Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leica Scanstation C10</td>
<td>±4 mm</td>
<td>12”</td>
<td>12”</td>
</tr>
<tr>
<td>Trimble LaserAce 1000</td>
<td>±100 mm</td>
<td>7200”</td>
<td>720”</td>
</tr>
</tbody>
</table>
Artificial neural network, interval analysis and homotopy continuation methods provide mathematical or statistical models of the inaccuracies of the measurements by the magnetometer.

Since the highest measurement uncertainties are those of the horizontal angles measured by the magnetometer of the rangefinder, the researcher focuses on the calibration of these magnetometer measurements.
Interval analysis is a well-known method for computing the **bounds of a function**, these being given bounds on the variables of that function (E. Ramon Moore and Cloud, 2009).

The uncertainty of each measure can be represented using an interval defined either by a **lower bound** and a **higher bound** or by a **midpoint** value and a radius.

Interval analysis is used to model the uncertainty of each measurement of the horizontal angle and horizontal distance made by the rangefinder.
For distances observed from a position of the rangefinder, the possible position of the surveyed point by two concentric circles centred on the position of the rangefinder and of radii, the measured distance plus and minus the uncertainty on the distance.
For horizontal angles observed from a position of the rangefinder, the possible position of the surveyed point by **two rays** emanating from the position of the rangefinder and whose angles with respect to a given point or the north are the measured angle plus and minus the uncertainty on the horizontal angle.

Therefore, the surveyed point must be within a region bounded by these four loci: in between two concentric circles and two rays.
Figure 9: The geometric loci of each corner of a room as a function of all the measurements
A homotopy is a continuous deformation of geometric figures or paths or more generally, functions: a function (or a path, or a geometric figure) is continuously deformed into another one (Allgower and Georg, 1990).

Homotopy is used to calibrate the rangefinder. The main idea is that the 360 degrees compass of the magnetometer is subject to continuous deformations, which do not induce any cut of any single part of this compass, nor any gluing of different parts of this compass.
One can therefore think that the 360 degrees compass of the magnetometer is made of a highly deformable material like plastic, while the 360 degrees compass of the theodolite component of a total station is made of a very non-deformable material like temperature-invariant metal.

This homotopy calibration can be visualized as the continuous deformation of each sector (defined by the rangefinder horizontal angle intervals of room 1) of a plastic disk (corresponding to the old-time theodolite graduated disk) to the corresponding sector of the total station’s theodolite graduated disk.
Interval Analysis and Homotopy Continuation
Interval Analysis and Homotopy Continuation

cspline=(2.835277541322018*x-65.91303193139909*x^3)*charfun2(x,-inf,0.135214008)+(36.95438765091345*x^3-
110.8631629527404*x^2+110.8472201502744*x-
35.93844484844747)*charfun2(x,0.904669261,inf)+(-
42.13985472016081*x^3+103.7992264328436*x^2-
83.35124501967609*x+22.6233491424303)*charfun2(x,0.825306122,0.904669261) +(-2.820265996590805*x^3+6.447134568590096*x^2-
3.005967614601302*x+0.5201993703648098)*charfun2(x,0.155102041,0.825306122)+(534.1896340799024*x^3-243.4268600486203*x^2+35.74999894335104*x-
1.483510467657241)*charfun2(x,0.135214008,0.155102041)

0.25*cspline+0.75*lambda(x)^0.9325
Calibration of the horizontal angle measurements of the rangefinder using theodolite horizontal angle measurements

<table>
<thead>
<tr>
<th>Point</th>
<th>Horizontal angle rangefinder (decimal degrees)</th>
<th>Horizontal angle first reading theodolite (degrees min sec)</th>
<th>Horizontal angle 2nd reading theodolite (degrees min sec)</th>
<th>Average Difference horizontal angle theodolite (decimal degrees)</th>
<th>Calibrated rangefinder horizontal angle</th>
<th>Difference between consecutive calibrated horizontal angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>268.9</td>
<td>163 19 18</td>
<td>343 19 51</td>
<td>67.745139</td>
<td>268.9</td>
<td>67.745139</td>
</tr>
<tr>
<td>2</td>
<td>336.0</td>
<td>231 04 54</td>
<td>51 03 40</td>
<td>122.85028</td>
<td>336.645139</td>
<td>122.85028</td>
</tr>
<tr>
<td>3</td>
<td>99.6</td>
<td>353 55 21</td>
<td>173 55 15</td>
<td>65.881667</td>
<td>99.495417</td>
<td>65.881667</td>
</tr>
<tr>
<td>4</td>
<td>166.1</td>
<td>59 50 03</td>
<td>239 46 21</td>
<td>294.264583</td>
<td>165.377083</td>
<td>294.264583</td>
</tr>
<tr>
<td>5</td>
<td>98.5</td>
<td>354 04 30</td>
<td>174 03 39</td>
<td>169.258333</td>
<td>99.641667</td>
<td>169.258333</td>
</tr>
</tbody>
</table>
An artificial neural network is designed by several interconnected nodes which are called neurons.

To train the artificial neural network, data is required to be divided into three datasets as training, validation and test data. Input data are the rangefinder measurements and target data are Total Station data.
Our training algorithm is Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963; Moré, 1978; Lourakis, 2005).

Levenberg-Marquardt algorithm is an iterative technique that determines the minimum of a multivariate function that is presented as the sum of squares of non-linear real-valued functions.

It is a standard technique for non-linear least-squares problems (Lourakis, 2005).
Neural Network

\[w_{K+1} = w_K - (J_k^T J_k + \mu I)^{-1} J_k e_k \]

Where \(\mu \) is always positive, called combination coefficient;

\(k \) is the index of iterations;

\(w \) is the weight vector;

\(e \) is error vector;

\(J \) is the Jacobian matrix that contains first derivatives of the network errors with respect to the weights and biases;

And \(I \) is the identity matrix.
Neural Network vs Homotopy Continuation

<table>
<thead>
<tr>
<th>Point</th>
<th>Horizontal angle rangefinder</th>
<th>Horizontal angle total station</th>
<th>Calibrated rangefinder horizontal angle (homotopy)</th>
<th>Calibrated rangefinder horizontal angle (neural network)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ2-1</td>
<td>95.9</td>
<td>95.3</td>
<td>95.3</td>
<td>96.08</td>
</tr>
<tr>
<td>Δ3-2</td>
<td>82.1</td>
<td>79.55</td>
<td>79.55</td>
<td>82.07</td>
</tr>
<tr>
<td>Δ4-3</td>
<td>102.9</td>
<td>109.07</td>
<td>109.07</td>
<td>100.57</td>
</tr>
<tr>
<td>Δ1-4</td>
<td>79.1</td>
<td>76.08</td>
<td>76.08</td>
<td>81.27</td>
</tr>
</tbody>
</table>
Residual errors of our building model collected by the rangefinder have been minimized using least square adjustment, polynomial kernel, interval analysis and homotopy continuation.

Then we glue geometrical features such as rooms and corridors to model a precise geometrical model.

We defined six topological relationships between two building features.
3D Feature Merge

![Diagram of 3D Feature Merge]
Figure 11: A precise geometrical model of a) 2D floor plan b) 3D floor collected by the rangefinder.
3D Topological Navigation Network Modelling
Figure 12: Surveying control points as dual nodes: doors are represented as blue points, elevators as red points, room and corridor control points as green points.
Figure 14: Topological indoor navigation network model.
Figure 15: Topological indoor navigation network model generated using DHE data structure.
Demo
movies\model.webm
A topological mathematical function has been introduced against the popular statistical least square adjustment which is obtained by continuous deformation of the function mapping of the rangefinder measurements to the theodolite measurements.
We presented the interval valued homotopy model of the measurement of horizontal angles by the magnetometer component of the rangefinder.

This model blends interval analysis and homotopy continuation. The results prove that homotopies give the best results both in terms of RMSE and the L_∞ metric.
Thank you