STRICT AND AUTOMATIC MAPPING OF IFC-BIM MODELS INTO SEMANTICALLY ENRICHED 3D CITYGML BUILDING MODELS (EXTERIOR AND INTERIOR)

1ST INTERNATIONAL IAG WORKSHOP ON BIM AND GIS INTEGRATION

25 OCTOBER 2017

Rudi Stouffs
IFC TO CITYGML

• Challenges
• Approach
• Scope
• Use cases
CONVERSION PROCESS

B Native BIM

C IFC

D CityGML

A Virtual Singapore

revit
ArchicAD
AecosIM
Tekla
A: **Virtual Singapore CityGML Model**

- Virtual Singapore is a dynamic 3D city model and collaborative data platform. The model and platform will be unveiled during the World Cities Summit in July 2018.

Challenge 1: *Ensure the research is driven by user needs*
A’: POTENTIAL USE CASES

- Housing & Development Board (Centre of Building Research)
 - energy
 - urban greening
 - living environment
 - waste & water
 - building technology

- Urban Redevelopment Authority
 - housing
 - transport
 - economy
 - recreation
 - identity
 - public space

- Singapore Land Authority
 - 3D cadastre & strata
 - planning
 - operations
 - risk management
A’: Potential use cases

- Simulations
 - thermal comfort (cool walls)
 - energy consumption (common lighting, elevators)
 - safeguarding wind corridors
 - limiting noise
 - solar photovoltaics
 - greening
 - rainwater harvesting and recycling
 - urban mobility

- Code compliance
 - privacy
 - view

- Visualisation
 - operations (e.g., refuse disposal)

Challenge 1: Ensure the research is driven by user needs
B: Native BIM Building Models

- Singapore’s Building and Construction Authority (BCA) will mandate e-submissions in native BIM format for new developments with GFA more than 5,000 m². Native BIM e-submissions must be prepared in accordance with the prevailing CoP.

<table>
<thead>
<tr>
<th>Types</th>
<th>Voluntary</th>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>19 October 2016</td>
<td>Second half of 2017</td>
</tr>
<tr>
<td>C&S Engineering</td>
<td>1 October 2017</td>
<td>Second half of 2018</td>
</tr>
<tr>
<td>MEP Engineering</td>
<td>1 October 2017</td>
<td>Second half of 2018</td>
</tr>
</tbody>
</table>

Challenge 2: Work with real-world native BIM models
C: IFC4

- IFC4 Addendum 2 published on 15th July 2016

- Selection of IFC4 as state-of-the-art IFC standard
 - native BIM models as input
 - focus on architectural building data – including foundation (piling)

\textbf{Challenge 3:} Demonstrate the conversion of more information than has been previously achieved – to enable automatic creation of semantically enriched data models
CityGML v3.0 is an ongoing development
 - Core Model
 - Level of Detail (LOD) concept
 - improved interoperability with other relevant standards (IndoorGML, IFC, LADM)

Application Domain Extension (ADE)
 - GeoBIM (IFC) ADE for integrating semantic IFC data in CityGML is insufficient for our purpose

Challenge 4: Transition from CityGML v2.0 to CityGML v3.0 at some time during the project
CONVERSION PROCESS

Native BIM → IFC → CityGML → Virtual Singapore

1

2

Software:
- revit
- ArchiCAD
- AecoSIM
- Tekla

Smart Nation Singapore
1: FROM NATIVE BIM TO IFC4

• Model consistency
 – no initial weeding of unfavourable BIM models – aim to determine workarounds for modelling inconsistencies
 – use of and tweaking of existing *export facilities* to ensure inclusion of all required information

• Model checking
 – can a *Model View Definition* (MVD) be used to ensure consistency?

• Model guidelines
 – suggestions for amendments to BIM e-submission *Code of Practice*, based on enhanced practical understanding of BIM-IFC-CityGML interoperability levels
2A: FROM IFC TO CITYGML — SCOPE

• Starting points
 – IFC4
 – buildings – architectural information (including foundation)
 – CityGML LOD3
 – exterior and interior (LOD4)

• Specification range
 – min: conversion of geometric model content
 – max: complete and lossless
 – use cases based
 – configurable?
2B: FROM IFC TO CITYGML

• Kernel
• Core layer
 – product extension
• Interop layer
 – shared bldg elements
 (wall, column, slab, stair etc.)
• Domain layer
 – architecture domain (windows and doors)
 – structural elements (piles and footings)
• Resource layer
 – to be derived from core and domain layer
 what is needed to support

Image adapted from “Industry Foundation Classes Version 4 - Addendum 2”, buildingSMART International Limited.
2B: FROM IFC TO CITYGML

• Conversion of geometric content
 – SweptSolid, Brep, CSG, ...

• Type propagation from building elements to surfaces
 – walls, roofs, slabs, columns, beams, doors, windows

• Conceptual objects supporting informational use cases
 – spaces (physical and logical)

• Semantic relations supporting simulation use cases
 – window in a wall, ...
 – relationship between spaces and boundaries (CityGML v3.0)

• Relevant properties to support use cases
 – material properties: shader, reflectivity, transmittance, roughness
 – intended usage of spaces
 – ...

REMAINING POINTS

• From IFC to CityGML

• Theoretical framework
PROJECT DETAILS

- **Project duration:** May 2017 – April 2019
- **Funding:** NRF2015VSG-AA3DCM001-008
 NRF and GovTech
- **Research collaboration:** OSI
- **Collaborating agencies:** HDB, BCA, URA
- **Collaborating vendors:** Bentley, Graphisoft, Trimble, Autodesk
RESEARCH TEAM

• Principal investigators:
 – Rudi Stouffs
 (NUS – Dept. of Architecture)
 – Patrick Janssen (co-PI)
 (NUS – Dept. of Architecture)

• Research fellows:
 – Helga Tauscher (NUS)
 – Filip Biljecki (NUS)
 – James Crawford (OSI)

• Research assistants:
 – Chen Kok Kiong
 – Amol Konde
THANK YOU

1ST INTERNATIONAL IAG WORKSHOP ON BIM AND GIS INTEGRATION
25 OCTOBER 2017

Rudi Stouffs